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ABSTRACT 

In this paper we discuss relations between the following types of conditions 

on a representation ~ in a cuspidal L-packet of V(3): (1) L(s, ~r x ~) has 

a pole at s = 1 for some ~; (2) a pertod of ~r over some algebraic cycle in 

U(3) (coming from a unitary group in two variables) is non-zero; and (3) 

~r is a theta-series lifting from some unitary group in two variables. As an 

application of our analysis, we show that the algebraic cycles on the U(3) 

Shimura variety are not spanned (over the Hecke algebra) by the modular 

and Shimura curves coming from unitary subgroups. 
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Introduction 

The theory of automorphic forms and L-functions for the quasi-split unitary 

group 

G = U(3) 

has been developed by several authors in the last fifteen years. For a review of 

relevant results, methods, and unexplained notation, we refer the reader to [Gel. 

In the present paper, we continue earlier investigations by analyzing the fol- 

lowing types of conditions on a representation r in a cuspidal L-packet of G: 

(1) the Langlands L-function L(s, r x ~) has a pole at s = 1 for some ~, i.e., ~r 

is "endoscopic" in the sense of [Roll; 

(2) a period of r over some algebraic cycle in U(3) (coming from a unitary 

group in two variables) is non-zero; mid 

(3) ~r is a theta-series lifting from a unitary group U((I,') in two variables. 

In case ~r is generic, it turns out that all three of these conditions are equivalent 

(cf. §2.5 below). More precisely, take U(¢')  to be the quasi-split unitary group 

U(1, 1) over the quadratic extension E of F. Then the following are equivalent: 

(1) L(s, ~r × ~) has a pole at s = 1 for some fixed ~ ; 

(2') for some ~ in V~t, the non-compact period 

UO,1)(F)\UO,1)(A) ~a(h)~(det h)dh 

does not vanish; and 

(3') an appropriate theta-series lift of ~r to U(1, 1) is not zero. 

What  is the situation for arbitrary (not necessarily generic) 7r? As remarked 

at the end of §8.9 of [GePS], the period in (2') is always zero if 7r is not generic; 

thus some substitute for this condition is needed. In the present paper, we 

make precise the notion of a generalized ("U(2)") period integral for any ~r (as 

appears in condition (2) above), and then we show that conditions (2) and (3') 

are equivalent. However, we also show that condition (1) - -  the existence of a 

pole for L(s, ~r × ~) at s = 1 - -  is strictly weaker than both conditions (2) or (3'). 

More precisely, we construct cuspidal 7r such that the period integrals 

Ge(F)\Ge(A) ~(r)x(det v)d," 

vanish identically for all characters X of U(1), aald all cycles Gc in U(3) coming 

from some U(q~'), even though L(s, ~r x ~) has a pole at s = 1. 



Vol. 83, 1993 CUSP FORMS AND ALGEBRAIC CYCLES 215 

On the one hand, this result emphasizes an obvious point: whereas property 

(1) is shared by either all or none of the cuspidal members of a given L-packet, 

properties (2) and (3') can be shared by only some. Thus the real goal should be 

an intrinsic characterization of such properties, preferably in purely local terms 

(cf. §3.2, where, for example, a local criterion for (3') is conjectured). 

On the other hand, this result is of special interest in the light of Tate's conjec- 

tures relating algebraic cycles to poles of L-functions (cf. [B1Ro]). In particular, 

our methods imply that the algebraic cycles on the U(3) Shimura variety are not 

spanned by the modular curves coming from "U(2) subgroups"; see Section 2.9 

for a precise statement and proof. 

In Section 1, we collect several basic results about theta-liftings for the dual 

pairs (U(~'), U(3)); among other things, we discuss the irreducibility of the theta- 

lifts, and we prove that the theta-lift to U(3) of a cuspidal a on U(¢') is always 

non-zero for at least "most" choices of lifting data (¢, 7, X1, X2). 

In Section 2 we define U(2)-periods, discuss the equivalence of conditions (2) 

and (3') for an arbitrary cuspidal 7r, and give an explicit formula for the (com- 

pact) periods of endoscopic hypercuspidal 7r. Using this fornmla, we also give 

examples (respectively) of hypercuspidal 7r which satisfy condition (1) but do not 

(respectively do) satisfy conditions (2) and (3'). We also explain the connection 

to algebraic cycles on Picard modular surfaces alluded to above. 

It will be clear to the reader that these partial results leave largely untouched 

the problem of locally characterizing global properties of a general cuspidal 7r on 

U(3). To underscore this fact, we close by describing some natural open problems 

concerning Howe lifts and theta-series correspondences. 

We note that an apparently different approach to unitary periods was devel- 

oped in [Kud]. We also wish to thank M. Harris for pointing out a mistake in an 

earlier version of this paper, S. Rallis for several helpful conversations, the referee 

for his comments, and Mirimn Abrallam for her patient typing (and retyping) of 

the manuscript. 

(Minimal) Notation from [Ge] 

(1) E is a quadratic extension of F. 

(2) U(3) denotes the unitary group of the three-dimensional skew-Hermitian 
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space (V, O) whose matrix with respect to the basis {t- l ,  t0, gi } is 

(o0i) 
1 0 

with ~ in E satisfying ~ = -~. 

(3) The maximal unipotent subgroup N of U(3) (preserving t - l )  has the form 

g = {[w,t]} = 1 
0 

with w in E and z = ~N(_~ + t, t in F. 

(4) A cusp form ~0 on U(3) is hypercu~pitlal if its Fourier coefficients along N 

are all zero; in particular, such a cusp form is not generic. 

1. Basic Resul ts  on  Theta- l l f t ings  

Throughout this Section, U(~ t) will denote the unitary group of a two- 

dimensional space Y with Hermitian form Or. When Y contains isotropic vec- 

tors, and we wish to emphasize this, we might use W in place of Y, and U(1,1) 

in place of U(@'); otherwise, when Y is anisotropic, we call U(~') a "compact 
u(2)". 

1.1 S ta tement  of  results 

For the dual reductive pair (U(¢'),U(3)), as for a general unitary dual pair, 

theta-series liftings are parametrized by lifting data (¢, 7, X1, X2), where ¢ is a 

non-trivial character of A/F, 7 is a Hecke character of E whose restriction to 

AZF/F z is t~EIF, and XI and X2 are characters of El \El (A) .  Recall that: 

(a) the data ¢, 7 fixes a compatible embedding of U(V®Y) into the metaplectic 

group, hence a restriction of theta-functions O~ to U(V @Y) ([GeRol], §3); 

(b) the additional parameters X1, X~ serve to further fix the theta-functions 

on U(V) × V(~') through the fornmla 

O~"X2(g, h ) =  x,(det h)x2(det g)O.(s(g, h));  

and 
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(c) the data (~b, 7, X~, X2) determines a Howe lift and a theta-series lifting (cf. 

Chapter 2 of [Ge]); given a representation tr of U(~') ,  we denote the 

corresponding theta-lift on U(3) by O(a, ~b) or O(~b, ~) (suppressing the 

additional data 7, X1, X2 whenever possible). 

In this Section, we collect some useful - -  partly folkloric - -  results concerning 

theta-series lifts for the dual pair (U(&'), U(3)). These include the following 

assertions: 

(a) The local Howe lift to U(3) of an irreducible representation of a compact 

U(2) is never generic. 

(b) The theta-lift of a cuspidal ~r on U(3) is irreducible on U(q~'); moreover 

(i) its lift back to U(3) is ~r again; and 

(ii) the ~b-theta lift of any cuspidal a on U(1, 1) is generic on U(3) if and 

only if a is ~b-generic (here "~b-theta lift" refers to any theta-lifting 

with respect to the lifting data (~b, 7, X~, X2), ~b fixed). 

(c) The ~b-theta-lift of any fixed cuspidal representation ~r on a U(O') is non- 

zero on U(3) for at least some choice of data (% X1, X2): more precisely, 

for any fixed ~b, 7 and X2, we can find at least one X1 such that the 

(~b,7, X1,X2 ) lift of a is non-zero. 

1.2 Irreducib i l i ty  o f  theta- l i f t s  ( [ R a l ] )  

The result we need is the same for a general reductive dual pair as for 

(U(O') ,U(3)).  Hence we shall work now in this generality; in particular, as 

in Proposition 2.7 of [Oe], U1, [72 will denote m~y dual reductive pair, with pre- 

images D1,02 in the metaplectic group. 

PROPOSITION: Suppose 7r = ®Try is a cuspidal representation of D1(A), with 

theta-series lifting O(~,, 7r) to U2(A). Then: 

(a) I f  O(~b, lr) is non-zero and cuspidal, it generates *m irreducible represen- 

tation , = ®~rv of U2(A) with the property that each av is the Howe lift 

(b) The theta-lift of the cuspidal representation a back to U, (A), denoted 

O(~b, e),  is non-zero. 

(c) If  O(~b, ~r) is cuspidal, then it generates an irreducible cuspidal representa- 

tion of [~rl(A) equivalent to ~r. 
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Remarks: (1) Recall that 0 (¢ ,  ~r) does not denote a representation of U2(A), 

but rather a space of functions on U2(A), namely the theta-lifts 

fv = 

f~,,~(g2) 
~(F)\O~(A) 

as • runs through the space of wqj and ~0 through the space V~. Nevertheless, we 

shall continue to (sometimes) confuse an irreducible subspace of L2(Ui(F)\(Ji(A)) 

with the irreducible representation it generates; we hope this does not confuse 

the reader. 

(2) Since we are dealing now with theta-lifts between full inverse images in 

the metaplectic group, only the parameter ¢ is relevant. Indeed, the additional 

parameters (7, X1,X2) are required only to fix an embedding of the groups Ui 

themselves (inside the metaplectic group). In particular, in the special context 

of (U(3), U(O')), we can fix embeddings of these groups in the appropriate meta- 

plectic group and then apply Proposition 1.2 directly to cuspidal n and a on the 

unitary groups themselves. Also, since "multiplicity one" is known for U(3) = U1, 

we can conclude that the theta-lift of O(¢, 7r) back to U1 actually equals V,~, as 

soon as all the other assumptions of the Proposition are satisfied. We shall discuss 

this particular example further in §§1.4-1.9 below. | 

1.3 P r o o f  o f  P r o p o s i t i o n  1.2 ( a s s u m i n g  H o w e ' s  c o n j e c t u r e ;  cf. [ R a l ] )  

(a) Since 0(¢ ,  7r) is assumed to be cuspidal (mad non-zero), we may write 

i 

with each V~,, an irreducible, non-empty subrepresentation of L2o(U2(F)\(Y~(A)). 

To prove that only one such V~,~ can occur, we assume the contrary, i.e., that 

there are two distinct subspaces (at least). Then we can define the projection 

operator 
o(¢, P, • 

and also an element T in Bil(wq, x r ,  al ~ a~) ~ Hom(w o ® It, al ~ a2) by way 

of the formula 

T(~ ,~ )  = P ( f ~ , e ) ,  

for ~ in w~ °, and ~0 in V~. Note that 

T(wv(gl,  g~ )O, r(gl )~o) = al * a2(g2 )T( O, ~o) . 
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For any U2 representation a, let Hom0~(wq~ ® 7r, a) denote the space of L in 

Hom(w¢ ® It, a) such that 

for all gi in ~ri. Then for each place v of F, and each i = 1 or 2, composition 

of the map T above with the natural projection onto al produces a non-trivial 
~ 

element Li of HomU~(wq,. ® 7r~,ai.~). In this way, using Howe's local duality 

conjecture, we shall derive a contradiction. 

Given try as above, the Conjecture implies that Homo, xO2(wOo, 7r~®a~) (equiv- 

alently Hom~(wO. ® ~r~,a~))is non-zero only if a.  is tim uniquely determined 

Howe lift of lr~ (and then this Hom space is one-dimensional). Applying this 

above, we conclude that our assumption (on the reducibility of O(¢, 7r)) yields 

(at least) two linearly independent elements of HomO: (w¢. ®Try, a~) for all v; this 

is the desired contradiction to our assumption that O(¢, 7r) is not irreducible. 

(b) If a = O(¢, 7r) is cuspidal, then its theta-lift back to U~ (A) is at least 

defined. Denote this lift by O(¢, a). To prove that O(¢, a) ~ 0, we simply 

compute the inner product of any ~01 in O(¢, a), f in O(¢, 7r), with an arbitrary 

~o in V,r. The result is 

~o(g----)~oI(g)dg= /Vt(F)\O,(A)~(g)( / _ f(h)6).(g,h)dh)dg /Ut ( f)\Ot(lt) JU2( F)\U2(A) 

y(h)([ ~o(g) 0,~(9, h)dg)dh J = fV2(F)\O2(A) 

= /V2(F)\O2(A) f(h)fw(h)dh#O 

since both f and f~ are elements of the space of a (and they are non-trivial for 

judicious choices of q0 and f!). 

(e) If O(¢, a) is assumed cuspidal, then by (b) and (a) together, we conclude 

O(¢, a) generates an irreducible representation ~r' of 0"1 (A) not orthogonal 

to rr. Thus ~r' must be equivalent to 7r. 

Remarks (on the assumption of Howe's conjecture): To the best of our knowl- 

edge, there remain a few special cases of Howe's local conjecture which have 

not yet been proved in residue characteristic two (of. [Wald] for the most gen- 

eral results available). Therefore, one must still exercise some care in applying 

Proposition 1.2 on the irreducibility of theta-lifts. In particular, we might either 
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need to work with an irreducible component of this lifting; or assume that au 

for "even" v is such that Howe's conjecture is already known to hold (e.g., Uu is 

compact, or a~ is unramified). | 

1.4 Specialization to (U(3), U(~I,')) 

In this setting, as we have already remarked, once splitting data is fixed, Propo- 

sition 1.2 applies directly to cuspidal representations 7r and a of U(3) and U(¢') ;  

in particular, because multiplicity one holds for U(3), we can conclude that the 

theta-lift of O(~r) back to U(3) actually equals ~r, provided all the other assump- 

tions of Proposition 1.2 are satisfied. 

So the question remains: in this case, are such cuspidality and non-vanishing 

assumptions automatically satisfied? The answer is generally "yes", as we shall 

now show in the sequence of results 1.5-1.8 below. 

1.5 Towers of liftings 

This method (which originated in [Ral]) gives a criterion for the cuspidality of a 

theta-lift. In the present context, it asserts that the lift of some 7r is cuspidal if 

and only if its lift to all suitable smaller unitary groups is zero. 

1.5.1. PROPOSITION: I f  7c is a cuspidal automorphic representation of U1 = 

U(3), then its theta-lifts to U2 = U(#2') are cuspidal (though possibly zero). 

Proof." We may assume U(q~') ,~ U(1,1) (since otherwise there is nothing to 

prove). The Proposition is then a simple instance of the philosophy of "towers 

of liftings" described in §3.12 of [Gel, in this case for the tower 

u(3) 

z" U(3,3) 
, /  U(2, 2) 

\ u(1,1) 
\ u({0}) 

Moreover, a direct proof results from the computations of §2.2 below, a.s we shall 

observe there. | 

1.5.2 PROPOSITION: Fix a cuspided automorphic representation a of U(~')(A), 

and lifting data s = s(¢,  7, XI, X2). Then the s-theta lift of  a to U(3) is cuspidal 

f f  and only i f  the s-theta lift of  a ®71 to U(E) is zero. (Here 71 is the restriction 

of 7 from E to the norm 1 elements of E.)  
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N.B: This Proposition also amounts to a special case of the phenomenon of 

"towers of unitary liftings" described in §3.12 of [Ge]. | 

Proof: Let ~ be any function in the theta-lift of a to U(3). As expected, we 

must compute the constant term of ¢2 in terms of the theta-lift of cr71 to U(E). 

In fact, we shall first compute the constant term of ~ along the center U of 

the maximal unipotent subgroup N. To continue, we shall use a certain "mixed 

model" realization of the Weil representation of Mp(V ® Y) associated to the 

decomposition 

V ® Y = ( t - , ) ®  Y + [(to) ® Y' O(to)® Y"l + (gl)® Y , 

where Y = Y' 0 Y" is any complete polarization of Y, and { t - l , t0 , t l}  is the 

usual basis for V. In this model, we recall that the Weil representation w¢ acts 

in the space of $(( t , )  ® Y @ ((to) @ Y") ~ S (Y  × Y"), and the action of N is 

given by the formula 

w¢ 1 ff~ , 1 ¢(y,y") 
0 1 

(A.1.2) 

where 

= ¢(2t(y,y) + 2tr(~w(y",yl)) + tr(~N(w)(yll ,yl))¢(y,y" + ffJy11) 

z=~-~ +t, 
with t in F. (Here y =- Yl + Yll according to the decomposition Y = Y' + Y".) 

Similarly, if Y is isotropic, and ~' has the matrix form 

with respect to the basis {w-l, wl }, then the action of the subgroup 

stabilizing w-1 is given by the formula 

(( '  ':)) (A.1.4) we, 1, 0 ¢(y,y") = ¢(2sN(~y'.'))¢(s .y, ) .  
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(Here s .  y denotes the natural action of 

on the vector y in Y, and y" = y:'w~ .) For a derivation of both formulas (A.1.2) 

and (A.1.4) above, see the Appendix to [Ge]. 

In particular, (A.1.2) implies that a typical element 

o(t) = 1 
0 

of U acts in S(Y, Y") through the formula 

~ ( 4 ¢ , - r ) ( , l ( t ) ,  ) ~ y , ~ )  ¢ (2 (~ ,~ ) t )¢ (u ,¢ ' )  

Thus we compute 

~v(e) = IF\,/V(*')\V(*')(,) f(h)o'(rl(t)'h)dh dt 

ll,lg' \A 

=fv  x,(deth)f(h) E E w~(s(1, h))¢(y,y")dh. 
(~)\u(,~,)A y" eY" (y,~)=o 

On the other hand, it is easy to check that if q~(y, y") is of the form ~(y) 2(y ), 

then 

(1.5.3) 

~(~(¢,-r)(i, h))~(~, ¢') = ~(~, (¢, ~)(1, h))~, (~)~(~(¢, ~)(1, h))¢~(¢'). 

Therefore, 

~pu(e) = q h ( 0 ) /  , , 7 'x ' (de th) (  Z w~ '(s2(¢'7)(l'h))~(y")f(h)dh 
J v(~ )\v(~ )(A) ¢,~y,, 

(1.5.4) z z 
(,~,)\u(<~,)(A) (v,v)=o ¢ ' e Y "  

~#o 

w~,(s(1, h))¢(y, y") X1 (det h)f(h)dh . 
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N.B: (1) In the first term on the right side of (1.5.3), s1(¢ ,7)  refers to the em- 

bedding of U(W' ® Y) into Mp(W'  ® Y) determined by the data (¢, 7), where W' 

1 is the corresponding is the skew Hermitian space spanned by g-I and gl, and w~0 

Well representation for the dual pair (U(W'), U(Y)). Similarly, w~, "s2 denotes 

the Well representation for the pair U((g0)) × U(Y). (Note that h always denotes 

an element of U(Y), but the pair (1, h) has three different meanings in (1.6.1), 

being viewed alternately as an element of U(V ® Y), U(W' ® Y) or U(E ® Y)!) 
(2) Since U(Y) preserves the polarization (g-1 ® Y) • (gl ® Y) of W' ® Y, it 

acts (essentially) linearly on ~ , ,  viz. 

(1.5.5)  i wq,(s, (1, h))&l (y) = 7 '  (det h)~]?l (hy). 

The 7 '  appearing in this formula is analogous to the one appearing in (3.4.2) 

of §3 of [Gel. (More generally, whenever a complete polarization Z ~ Z* comes 

into the picture - -  with or without the presence of a mixed model - -  mad one 

member of the relevant unitary dual pair preserves this polarization, then its 

action through w,/, • s is just the linear action twisted by 71 • de,.) | 

Let us return now to the calculation of (~0v and) ~ON. If ~'  is anisotropic, then 

the second term in (1.5.4) does not appear. On the other hand, if Ol has the 

,o,m (0 

with respect to the isotropic vectors w-1 (generating Y') and Wl (generating 

Y"), then the second term becomes 

(1.5.6) [ E (we(s(1, h))*)(w-ly")xl(det h)f(h)dh, 
auH (F)\U(*')(A) yt'EY" 

with UH C U(q") the unipotent subgroup stabilizing W1. (Here we are using 

(1.5.5), the fact that each non-zero y in Y is of the form 7 • w- i  for some 7 

in U(~')(F) and the fact 7'(det h) = 1 for h in U(~')(F).) Our claim now is 

that integration over the full maximal unipotent subgroup N of U(V) makes this 

second term above disappear altogether. 

Indeed, applying formula (A.1.2) above, with y = w- i  (i.e. Y~ = w-1 and 

yH = 0), implies that only the term in the integral with y" = 0 survives the 

integration over N, i.e., the "second term" becomes 

fu we(s(1, h))~(w_,, O)X1 (det h)f(h)dh . 
u(F)\U(~')(A) 



224 S. GELBART ET AL. Isr. J. Math. 

Then by formula (A.1.4) above, this last integral may be written 

and this is identically zero since f was assmned to be cuspidai on U(q"). 

Returning to the first term in (1.5.4), we conclude 

= *,C0) [  'x,(det h) h)*,(¢')f(h)dh 
J o  (~,)\u(.,)(A) 

= ~,(0)  [ x , (det  h)O,~, (s2(1, h))7'  (det h)f(h)dh 
du (,,)\uc~,)(A) 

(since the first term in (1.5.4) is clearly invariant under N(A)). But this last 

integral clearly represents the s-theta-lift of a ® 3 ,I to U(E). Thus we conclude 

~0 is cuspidai if and only if this lift vanishes, l 

1.6 L - f u n c t i o n s  and n o n - v a n i s h i n g  o f  t h e t a - l i f t s  

In this paragraph we give a criterion for the theta-lift of ~r from U(3) to U(~ ' )  

to be non-zero, and show that the non-vanishing of this lift already implies that 

7r itself is the theta-lift of some cuspidal a on U(q~'), i.e. every ~0 in :r is a theta- 

integral lift of some f in a (even if we can't prove yet that the full theta-lift of a 

is irreducible). 

PROPOSITION: 

(a) If  L(s, 7r x ~) has a pole at s = 1 for some ~, then the theta-lift of ~r to 

U(@') is non-trivial (for some U(~ ' )  and lifting data (¢, 7, X,, X2)); 

(b) Suppose the theta-lift of Tr to U( q~') is non-zero (for the lifting data ¢, 7, Xx, 

X~) and a is an irreducible component of this lift. Then its theta-lift back 

to U(3) will be cuspidal, and equal to V,,. More precisely, for any b in F t, 

the (¢b,7, Xx,X2) lift o f a  ® 71 to U(E) will be zero, so by Proposition 

1.5.2 the (¢b,7, XI,X2) theta-lift of a to U(3) will be cuspidal (for any b); 

moreover, for b = 1, the theta-lift of a back to U(3) contains 7r. 

Proof'. Although (a) and (b) are discussed in the proof of Theorem 6.1.1 of 

[GeRol], we fill in the details of the proof of (b) since they are lacking there. By 

Proposition 1.5.1, we know that g is cuspidal autonmrphic. So for any b in F ~, let 

~rb denote the theta-lift of a to U(3) corresponding to the data Sb = (%,  7, X~, X2). 

By Proposition 1.5.2 and multiplicity one for U(3), we know that 7rb (with b = 1) 
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will contain 7r as soon as we know this rrb is cuspidal. But by Proposition 1.5.2, 

7rb is cuspidal (for any fixed b) if and only if the sb-lift of a ® 71 to U(E) is 

zero. So let us assume this is not so, and then derive from this assumption a 

contradiction. 

Indeed, assuming ~N ~ 0 for ~ in the space of rrb, we construct a map 

c(A) 
7rb } IndB(A) x 

(for appropriate X) by integrating the constant terms for lrb against tile s-lift of 

a ® 71 to U(1). More precisely, let p be a character of U(E)\U(E)(A) such that 

(1.6.1) 

JU/O)\U(,)(A) JU/(,~') \ U(,~')(A) O,~,(s2(e, h))7'( det h )f(h )p-' 7 '(e)dhde ~ O, 

and define the functional T on 7rb by 

1 
u ~N e (1.6.2) T(~) = (,)\uo)(A) 

1 )  P-171(~)ds " 

Note that by the formula for ~N derived at tile end of the proof of Proposition 

1.5.2, it is clear that 

T(qa) = the expression (1.6.1) above.  

Thus it follows that T ~ 0. 

On the other hand, it is obvious from (1.6.2) that 

T(rrb(n)~) = T(~) 

and 

T(Tr~ ( 1  

for n in N ( A )  and l~l = 1. 

Now set 

(i" X e 
0 

i) 
.) 

~) = l , ( '?)- '  (¢)T(~) ,  

(~ --! (~ 
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To prove our claim that T intertwines ~rb with ind X, it remains to check that 

For this, just observe that 

---1 O~ 

= lal-r( )2T@). 

takes ( v , y " ) = e ~ ® v + e o ® v "  to (SV, Y") 

(which action has determinant ¢~2). Thus 

(" ) w¢(s 1 , v") = V"), 
6 - 1  

and the desired identity follows. 

To obtain the desired contradiction, note that (may irreducible constituent 

of) 7rb is almost everywhere equivalent to 7r. Indeed, at ahnost every place v 

(namely where b is a norm), the lift Howe (~-)b, 7, XI, X2)(av) is independent of 

b, and hence 7r, is equivalent to (lrb).. This implies that 7r itself is a CAP 

representation in the sense of [PS], i.e., it is almost everywhere equivalent to a 
, . a ( A )  

constituent of some man(A) x. On the other hand, the restflts of [Rol] imply 

that all CAP representation of G(A) must lie in some A-packet ri(p') with p' a 

unitary character of U(1,1) x U(1) (cf. Chapter 6 of [Ge]). 

More precisely, the exact form of X described above implies that each con- 

stituent of Ind X belongs to a packet of the form [I(P) with p = p(O) and 0 

semi-regular; el. pages 173-174 of [Rol]. In particular, by strong multiplicity 

one for L-packets, ~r itself belongs to such a packet, and this contradicts Theorem 

13.2.2 of [Rol]. | 

1.7 PROPOSITION (Whittaker models and non-vanishing of theta-lifts): 

Suppose U(¢ ' )  = V(1, 1), and ~ is any cuspidM repre~entatio,~ of U(¢ ' )  (not 

necessarily of the form O(Tr) as in Proposition 1.2). For emy tixed additive char- 

acter ~b o f F \ A ,  the (~b,7, X~,X2)-theta-lift of a to U(3) will automaticaJ1y be 

non-zero (for any 7, X1 and X2) provided cr is C-generic, i.e., its space of  ~b-th 

Fourier coetticients 

w(a'¢)={fv.\v.(.) f(sh) b(s)ds:fEV.,} 
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i s  n o n - z e r o .  

Proof." Let 7r denote the ¢-theta-lift of a to U(3) (with respect to the data 

(¢, 7, X~, X2)), and pick 9 arbitrary in ~r. To show that ~ # {0}, we shall compute 

the "C-Fourier coefficient" W~ of ~0 directly in terms of IV(a, ¢) (and hence show 

that W~ # 0 for at least some ~). 

Recall that 

where 

CN(n) = CN 1 
0 

and ~u is the constant term of 7~ along. 

= ¢(Im w) , 

0 
U= 1 

0 

already computed in the proof of Proposition 1.6. Starting from formula (1.6.2) 

for ~u, we again integrate over N(F)U(A)\N(A) using formula (A.1.2) of that 

Section. Since the first term in (1.5.4) was invariant under N(A), the presence 

of the non-trivial character CN(n) in the integration over N(A) now implies that 

this first term makes no contribution to W~(1). As for the second term, it follows 

from expression (1.5.6), together with (A.1.2) applied with y = w-l ,  that (this 

time) only the term with 

Y 4~  wl = w7 

survives the integration against CN(n). Hence we get 

W~(1) = / u n  w,~(s(1, h))~(w_t, w;)x,(det h)f(h)dh. 
(F)\UO,I)(A) 

Integrating now over UH(F)\UH(A) using formula (A.1.4) gives us (finally) 

W~(1) = 

/u~ w~(s(1, h))~(w_,,w;)( f f(sh)¢(sN(~)ds)x,(h)dh , 
(A) WO,])(A) J UH \us (A) 
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i.e., 

W~¢(1) = w,~(s(1, h ) ) ~ ( w - l , w l j , ,  l*~1~rv - (h)xl(de t h)dh . 
(A)\VO,1)(A) 

Note that W) ~N<~') is in the BH-orbit of 

W~(h) =/f(sh)¢(s)d~ ; 

indeed 

Thus W(a,¢)  ~ {0} implies PY(a,¢ N(~-')) # {0}, and the latter implies 

W~(1) ~ 0 (for appropriately chosen @). Therefore we have not only proved 

the Proposition, but also the (stronger): 

COROLLARY 1.7.1: For any f in V,,, with a cuspided on U(1, 1), let T denote the 

(¢,7,X1,X2) theta-lift o f f  to U(3). Then 

(1.7.2) 

w~(1) = Jv./(A)Wt,,I)tA) w,( s(1, h ) )~(w_,  , w~ ) X , (det h )W~ m¢-' , ( h )dh . 

In particular, },Y(~r, ¢) # {0} (which means ~r is generic) if and only ifYt;(a, ¢) # 
{o} (i.e. ~ is ¢-gene~i~). . 

Concluding Remark: From the computations of this Section, it is clear that 

theta-lift to U(3) from a compact U(~' )  can never be generic. Indeed, in this 

case the second term in (1.5.4) does not appear (and the invariance of the first 

under N implies that integration against any non-trivial character CN gives zero). 

As we shall see below, this fact also follows from its local analogue (Proposition 

1.9). . 

1.8 Genera l  non-vanishing of  theta-l i fts  

In this paragraph, Y is any Hermitian space of dimension 2 over E, and a any 

cuspidal representation of U(Y)(A). 
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PROPOSITION: For any fixed character of g, of AlP,  we can choose data 

(7, Xl,X2) such that the space of theta-series liftings x~,x2 _~ O~,. r (~, j is non-zero on 

U(V)(A) = U(3)(A). 

Xl,X2 _~ Proof: Take f in Vo and consider ~0f in 0~,~ (o) defined by the formula 

I v  O~"x' (s(¢, 7)(g, h))f(h)dh. 
¢Pl(g) = (Y)\U(Y)(A) 

To show that ~0 is non-zero for some choice of f ,  ~ and data 7, XI, X2, we shall 

examine the formula for the c-th Fourier coefficient of ~0 along the unipotent 

subgroup 

u = (~(t) = 1 : t e F} 
0 

with c # 0. For this, it is convenient to use the same mixed-model realization of 

w~ as used in §1.5. 

By definition, 

~ o ( 1 )  = [ ~s(~(t ) )¢(ct)dt  
JF \A 

Realizing w,/, in S(Y, Y") as in §(1.5), we have 

o~',x'(.(t), h) -- x~(det h) ~ ~ ~(~(t), h)¢(y, ¢ ') .  
vEY y"EY" 

Therefore, using formula (A.1.2) of that paragraph (with w = 0) we have 

u ~ Z we(l, h)¢(y, Y")X, (det h)f(h)dh.  ~o~o(I) = (Y)\U(Y)(A) (y __~ y,, 

Using formula (1.5.3) then gives 

xl(deth)f(h) ~ ~o~(1, h)q'2(~") 



230 S. GELBART ET AL. lsr. J. Math. 

where wc is a fixed vector in Y of length ~, and U~(Y) is its isotropy group in 

U(Y). 
Now note that the sum 

E to 2 1 n ,/,(s2( ,h)e2(y  ) 
y" E Y" 

just represents the theta-kernel 0%(1 ,  h) associated to the dual pair 

(U(E), U(Y)) (with lifting data (¢ ,7 ,  X~, X2)). Recall also (cf. (1.5.5)) that 

0.)~(81 (1, h)(Y~l (~Wc) .~ wl~(81 (1, "yh)(~l ( W c ) .  

Thus we may write 

v X,7 ' (det  h)~, (hwc)0%(1,  h)f(h)dh 
~)'bc(e) = e(Y)(F)\U(Y)(A) 

= IV X171(det h)~t(w~h) 
e(Y)(A)\U(Y)(A) 

(/V°(Y)(F)\Vo(Y)(.) XiX'(deth)O%(1,rh)f(vh)dr)dh. 

Note now that U~(Y)\Uc(Y)(A) is a compact abelian group isomorphic to 

E l \ E l ( A ) ,  and for a suitable choice of ~2 a~ld h0, 

r ~ O,2(rho)f(rho ) 

is a non-zero continuous function on this group. On the other hand, 

Xl"yl(det h)~l(wch) represents a fairly general function on Uc(Y)(A)\U(Y)(A), 
since ~1 is arbitrary. Therefore, picking X171 so that the X171-th Fourier coef- 

ficient of O , , ( rh0 ) f ( rh0 )  on Uc(Y)(F)\Uo(Y)(A) is non-zero, we conclude that 

the inner integral above, and hence the double integral for a suitable choice of 

~1, will be non-zero. II 

Remarks: (1) Although this result is useful (and indeed will be used later in 

this paper), it has many shortcomings: the most obvious is that we don't know 
X1X2 _~ which data (7, X1,X2) will make 7r = 0¢,  7 (~,j non-zero; hence we can't be sure 

which L-packet YI(p) on u(3)  contains ~-. We shall return to this question in 

§3; a more desireable result would be a criterion for checking directly whether a 

given lift Axtx~r-~ "¢,7  ta) is zero or not. 
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(2) We may reformulate this Proposition as saying that for fixed ¢ and 7, 

there exists XI such that 
OXlX2(,~ ¢,~ ~vj # 0 

Indeed, at the crucial endpoint of the proof, we just need to choose XI such 

that the X17~-th Fourier coefficient of O,~(rho)f(rho) is non-zero. Thus the 

Proposition really asserts that for given data ¢,  7 and X2, there exists X1 such 

that 

!b,~  ~. 

1.9 Local Howe lifts from a compact  U(2) 

Suppose Y is an anisotropic Hermitian space of dimension two over the local 

quadratic extension E of F,  and a is an irreducible admissible representation 

of U(Y). Because Howe's conjecture holds for arbitrary representations of the 

compact group U(Y), the Howe lift of a to U(3) can be defined as in Section 

2.4 and 3.11 of [Ge]; like a global theta-series lifting, it depends not only on the 

choice of an additive character ¢,  but also on the additional lifting data 7, X1 

and X2. 

PROPOSITION: The Howe lift of a from U(Y) to G = U(3) is degenerate, i.e., it 

supports no non-trivial Whittaker functionals. 

Proof." Without loss of generality, we may assume X1 = X~ = 1. Then we 

let r denote the Howe lift of a to G relative to the splitting data  s = s (¢ ,7 ) .  

Because U(Y) is compact, a" simply acts in the a-isotypic component of the space 

of the metaplectic representation we relative to the action of we o s restricted to 

U(V) x U(Y). Let V,~ denote this isotypic subspace. 

By a Whittaker functional for r ,  we metal a linear functional e : V, J C 

satisfying 

(1 .9 .1 )  o 8 ( n ) v )  = = C N ( - ) t ( v )  

for all v in V,, n in the standard maximal unipotent subgroup N of G, and CN 

a non-trivial character of N modulo its center 

{ 0 
u =  1 . 

0 
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We must prove that any such t is 0. 

By our assumption that 7r is the Howe lift of a, we have (cf. §1.3) a non-zero 

map T from w¢ o s(¢,  7) ® a to ~" satisfying 

T(w,l,(g , h)¢~ ® a(h) f )  = r (g)T(~  ® f )  . 

So composing T with any Whittaker functional t on r define a bilinear form 

(q~, f )  on we x a such that 

(1.9.2) (wt0 1 t~ ~, f )  = CN(n)(~, f )  • 
0 1 

But T must be surjective (by the irreducibility of ~r). Thus it suffices to show 

t h a t < @ , f > - 0 .  

For this, we (again) used the "mixed model" for w® associated to the decom- 

position 

V ® Y = ( L , ) ®  Y +[( to)® Y '  @to® r " ] + ( t ,  ® r 

where Y = Y~ @ Y" is any polarization of Y and {L1 , t0 , t i }  is the usual basis 

for V. In this model, w,~ acts in the space 8( t I  @ Y @ go @ Y") ~ ,9(Y ® Y"), 

and the action of N is given by the following formula 

w,/, 1 , 1 ¢(y,  y") 

(1.9.3)  0 

= ¢(2t(y, y) + 2tr(~w(y", y, )) + tr (~N(w)(y , l ,  y, ))'~(y, y" + ffJyl, ) 

where 
z = ~ N(w)  t ( w i t h t i n F ) .  

2 

(Here y = yl + Yll according to the decomposition Y' + Y", as in the global 

analogue used in paragraphs 1.5 and 1.7.) Ill particular, for 71(t ) ill U, we have 

w,~(tl(t), 1)¢ = ( ¢ ~ , )  ® ~2 

for @ ~I @ @2 and ®t I(Y) ¢(2t(y,y))qh(y) .  Therefore, from (1.9.2), it 

follows that for each fixed @2 and f ,  the distribution 

D : '~1 ---* (~1 ® ~2, f )  
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satisfies 

D(¢~¢, )  = D(¢1 ) 

for all t in F.  Thus, as is well-known, D must be supported at the origin. 

Let us first suppose F is non-archimedean. In this case, ¢1 , D(¢1) sup- 

ported at the origin implies that 

(¢, ® ¢2, f)  = - ( ¢ 2 , / ) ¢ 1  (0) 

for some bilinear form a on ,5"(Y') x Va. On the other hand, applying (1.9.3) 

(with y = 0) says we(n, 1)¢(0, y") = ¢(0, y"). Thus (1.9.2) implies 

CN(n).(¢2,  f )¢ , (0 )  = CN(n)(¢, ® ¢2, f)  

= (~0(n)¢,  f)  

= ~(¢2, f ) ¢ ,  (0) 

for all n in U \ N  and ¢1 in $(Y). Thus we conclude a(¢2, f )  - 0, i.e., < % f > =  

0, and the Whittaker functional g is zero as claimed. 

In the arehimedean ease, the proof is similar but a bit more complicated. 

In this case, ¢1 ~ (¢1 ® ¢2, f)  defines a distribution on C~°(Y) instead of 

$(Y), but since the trilinear form (¢1 ® ¢2, f )  is deternfined by its pull-back 

to C ~ ( Y )  x ,$(Y') x V,,, it still suffices to show that D is always zero. More 

significantly, the fact that D is supported at 0 now implies only that 

(¢, ® ¢2 , f (  = Z a 1 ( ¢ 2 , f ) D t ( ¢ , ) ( 0 )  , 
I 

o'~ °~2 (and v' v" where D I is the differential operator ~ ~ y = + according to 

the decomposition Y = Y' + Y"). So this time we have to apply D 1 to the right 

hand side of (1.9.3) before setting y = 0. The result is that (1.9.2) now implies 

the contradiction that CN(n) is a polynomial in the variables of n (instead of 

just 1), unless all the (~ t (¢2 , / )  = 0 (respectively just c~(¢2, f )  = 0 as in the 

non-arehimedean ease). Thus we still conclude that < ¢1 ® ¢ 2 , f  > -  0, i.e., 

~ = 0 .  II 

Remark: Proposi t ionl .9worksindependent lyof thechoiceof¢N,  ¢ o r  7. | 
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2. Analys is  o f  U(2)-Periods 

2.1 Def in i t ions  

As usual, let G denote the standard quasi-split unitary group U(V)  = U(3), 

and let rr be a fixed euspidal automorphic representation of G(A). The space of 

periods of ~r is determined by a certain U(2)-subgroup/arc of G mid an automor- 

phic character X of E 1 (A). 

More precisely, for any c in F z, let @c denote a Hermitian form in two variables 

such that det(¢~) = -c ,  and let Hc -- U(@~). Note that: 

(i) the isomorphism class of H~ depends only on the class of 

c modulo NE/F(EZ); 

(ii) Hc is quasi-split (and isomorphic to V(1,1)) if and only if c • NE/F(EZ); 

and 

(iii) the group He embeds in G, uniquely up to conjugation, as the stabilizer G¢ 

in G of a vector v¢ of "length" c. 

N.B: Since the form on V is skew-Hermitian, v of "length" c means (v, v) = c~. 
| 

Definition: For any ~ in V~, c in F ~, and character X of E 1 ( A ) / E  1 , define the 

per iod  P(~,  c, X) by the convergent integral 

P(qa, c, X) = fao(f)\Gc(A) ~(r)x(det r)dr . 

Then set 

P(lr, c,X) = { P ( ~ , c , x )  : ~ • V,r} . 

This is the (e, X) period of the (cuspidal) representation ~r. | 

2.2 T h e  re lat ion b e t w e e n  P(Tr, c, X) and theta- l i f t ings  

We fix U(1, 1) to act on the Hermi~ian space W = Ewl @Ew2, with corresponding 

Hermitian form 

_~-i 0 
Since det(@') = - 1  modulo norms, U(W)  ~ U(1, 1) ~ H1. Its derived group is 

simply SL2(F), and the stabilizer of wl in U(W)  is the unipotent subgroup of 

matrices 
t F } .  
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As mentioned before, U(V) x U(W) embeds into the symplectic group (for the 

space V ® W with alternating form TrE/F(O × O')), vald embeds into the meta- 

pleetie group of V ® W for each choice of splitting data (¢, 7, X1, X2)- 

THEOREM: Let 7r be a cuspidal representation of G. Then the following are 

equivalent: 

(i) P0r ,  c, X) # 0 for some c and X. 

(ii) 7r has a non-zero theta-Jift to H1. 

(iii) Ir is a theta-lift of some cuspided representation a of Hi. 

Furthermore, suppose tr is the theta-lift of 7r to Hi relative to the specific lifting 

data (¢ ,%x~,x2) ;  then P(Tr, c, TIX2) # {0} if  and only ff a has a non-zero 

Whittaker model V~(a, ¢c) relative to the additive character ¢c. 

Proof: We shall compute the Fourier coefficients of the theta-lift of may ~o in 

lr to HI. For this, we use a SchrSdinger model for w~, corresponding to the 

Lagrangian decomposition 

v + w = ( v  ® w , ) + ( v  +w:)  . 

In this model w¢ acts on the Schwartz-Bnfllat space S(V ® w2), mid we have 

0+(s(g, u(t)))c(v + wz) = ¢(tC'(v, v))~¢(:(g, 1))¢(v + w:). 

Since U(V) preserves each Lagrangian, we also have 

(2.2.1) w¢(s(g, 1))O(v ® w2) = 7 ' (det  g)O(vg ® w2). 

Using these formulas, let us compute the c-th Fourier coefficient of a typical 

element 

f 
f(h) = xl(det h) I x2(det g)O+(~o~,(s(¢,'r)(g,h))~(g)dg 

JG (F)\G(A) 

in the (¢,7,  X1,X2) lift of rr to Hi.  

Since the theta-functional in this model is 

o(+)= ~ +(v®w~), 
vEV(F) 
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we have 

\ 

× ~ ~o~(~(~,-y)(g, u(t))e(~ ®,~2)dg~ dt 
/ ,,~v(F) 

o r  

/6(F)G(a) 71xl(det g)~(g) Z 
~,¢V(F) 

~(vg®w2)(fF\A ~b(-ct+t~-l(v'v))dt) dg" 

Note that only vectors of length e can contribute to this sum over V(F). So 

letting ve be any vector length c, with stabilizer Gc in G, we have 

(2.2.2) 

f~o(e) =/JG(F)\a(A) 

= ~ 71xz(det g)O(vcg ® wz)P(¢ g, c, 71xz)dg 
o(A)\G(a) 

where ~g(x) = ~o(xg). Since q~ is all arbitrary Schwartz-Bruhat function on 

V(A), it is easy to conclude that  y¢°(e) = 0 if and only if P(~g,c,71Xl) = 0 
for all g in G(A). In particular, we conclude an(r, c, X) # 0 for some c and X 

if and only if 7r has a non-zero theta-lift to H1. (Indeed a theta-lift to H1 is 

non-zero if and only if some ~b,-th Fourier coefficient is non-zero.) This proves 

the equivalence of (i) and (ii) as well as the "furthermore" part of the Theorem. 

As for the equivalence of (ii) and (iii), this has been discussed already in §1.6 of 

the present paper). | 

Remarks: (1) In the proof above, it was implicit that c was non-zero. However, 

a similar computation of the constant term of f along U is possible using the same 

formulas for ~ ;  the conclusion in this case is that (2.2.2) reduces to the simpler 

formula 
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since v0 may be chosen to have stabilizer N in G. (Strictly speaking, this stabilizer 

is the slightly larger subgroup 

{(i 0 1.*)} 
containing N.) Of course, as ¢ is assumed cuspidal, this last integral is zero, and 

hence it follows f must also be cuspidal (as asserted in Proposition 1.5.1). 

(2) The relation between the non-vanishing of the lift form V(Y) to U(W) 
and the non-vanishing of certain "periods" is implied in [Wat], although that 

work ignores the splitting data (¢, 7) and Xl, X2. | 

2.3 Periods of  stable 7r 

Recall that a cuspidal 7r is s table  if and only if any theta-series lift of ~r to 

any unitary group in two variables is zero (cf. Theorem 6.1.1 of [GeRol]). In 

particular, any theta-lift of such a 7r to H1 ~ U(1, 1) is zero. Thus, for stable ~r, 

POr, c, X) = 0 for all c and X • 

This fact is philosophically consistent with Tate's conjecture relating the (exis- 

tence of) poles for L(s, ~ x ~) to the existence of non-trivial periods of 7r, since 

L(s, 7r x ~) is always entire for stable cuspidal 7r. 

Therefore, we henceforth restrict our discussion of periods to the (more inter- 

esting) case of endoscopic ~r. 

2.4 Periods of  except ional  r 

Suppose ~r is cuspidal but in an A-packet IX(P). If the theta-lift of 7r to U(1,1) 

were non-trivial, it would automatically be cuspidal, and ~r itself would then be 

a theta-lift of this cuspidal a on U(1, 1) (cf. the proof of Proposition 1.6 in 

Section 1). But by Proposition 6.2.1 of [GeRol], this would imply ~r E I-[(P) with 

p cuspidal, a contradiction to our assumption that ~r is exceptional. Thus we 

conclude (from Theorem 2.2) that the periods of such exceptional 7r must also 

all vanish. 
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2.5 The case of generic endoscopic 7r 

Suppose a" is a generic element of a cuspidal endoscopic packet I-[(P). In this 

case, the fact that L(s, ~r × ~) has a pole at s = 1 for some ~ = ~0 is equivalent 

to the fact that an appropriate theta-series lift of 7r to U(1,1) = HI is non-zero, 

and the residue of L(s, ~r x ~0) may be expressed directly in terms of the period 

P(*r0,1, 50). (Cf. 5.2.1 of [Ge] and Theorem 8.7 of [GePS].) Using Theorem 2.2, 

we thus conclude that -- for generic cuspidal ~r -- the following are equivalent: 

(1) L(s, lr x ~) has a pole at s = 1 for some fixed ~ = ~0 ; 

(2') P(Tr, l,~0) # 0  ; and 
(3') an appropriate theta-series lift of 7r to U(1, 1) is non-zero. 

Moreover, suppose the lifting data in (3') is (¢, 7, Xl, X2). Then the vanishing 

(or non-vanishing) of the compact periods P(r0,  c, 71Xl ), with c not in NE/F(E') ,  

can be read off from the vanishing (or non-vanishing) of the ¢c-th Fourier coef- 

ox , ,x , ,  , U(1, 1). ficients of the lifted representation a = ,.%,.y (rr) on 

Now what is the situation for arbitrary (not necessarily generic) r?  By 

the theory of [OeRol], conditions (1) and (3') are still equivalent, provided the 

phrase "to U(1, 1)" is replaced by the phrase "to some U(O')". Thus it remains 

to analyze the equivalence with (2'), modified to include compact periods as well. 

2.6 Compact periods of hypercuspidal Ir 

Let 7r be any cuspidal endoscopic 7r on U(3), which we now assume hvpercuspidal 

(since the generic case was just treated). In this case, we have already observed 

that P(a', c, X) is automatically zero if c is a norm; indeed, for c a norm, He 

U(1,1) and 

u qo(h)x(det h)dh = 0 
(1,1)(F)\U(1,1)(A) 

since the restriction of a hypercuspidal ~0 to U(1, 1) is cuspidal there (and hence 

orthogonal to all characters). 

Thus, we may restrict our attention now to the compact periods of a cuspidal Ir 

consisting of theta-lifts from a cuspidal a on some U(Y). In case U(Y) ,~ U(1,1), 

Theorem 2.2 already gives us a criterion for the vanishing of each P(Ir, c, X). Thus 

we further assume now that ~r lifts from c, cuspidal on an anisotropic U(Y). 

PROPOSITION 2.6 (A formula for P(~r, c, X)): Suppose qo = O(f, O) is the theta- 

series lift to U(3) of a cusp form f on the anisotropic unitary group U(Y), 
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with respect to the lifting data (¢,%X1,X2). Then for any X, and any c not in 

N(E') C F', 

f v  O,~, h)f(h)dh. P(~ ,c ,x )  = a(~2) (Y)(e)\VO')(A) (1, h)x*(det 

Here a( ~2 ) is a constant depending on ~2 , Eve denotes the one-dimensional skew- 

Hermitian space E with (z, w) = c~z@, X* is the character of U(Y) obtained via 

the theta-lift of x o det on Gc ,~ He (determined by the seane data (¢, 7, X~ , X2 )), 

and 0,~ a is a theta-kernel for the dued pair (U( Eve), U(Y) ) (with more details to 

be given below in the course of the proof). 

Proof'. By definition 

fG O(f, ¢)(r)x(det ,')dr P(~, c, X) = e(F)\G,(A) 

\ JU(Y)( F)\U(Y)(&) ] 

To continue, consider the decomposition 

where (vc, v~) = c~, and Z, is the orthocomplement of vc. Then we have the 

decomposition 

(2.6.1) V ® Y = ( v c ) ® Y @ Z c ® Y  

of the symplectic space V ® Y. Note that (Vc) ® Y is the symplectic space 

corresponding to the dual pair (U(Evc), U(Y)), whereas Zc ® Y corresponds to 

the pair (U(Ze), U(Y)), with V(Zc) ~-, Hr. To compute P(qo, c, X), we shall realize 

w¢ through its Schrhdinger model in S(X)  relative to a suitable polarization 

V ® Y = X @ X *  . 

More precisely, let us assume that this polarization is adapted to the decom- 

position (2.6.1) in the sense that X = Xl @ X2 with X1 = X f3 ((vc) ® Y) and 

X2 = X N (Ze ® Y). Then if • in S(X)  is of the form 

=(I )1x@2,  with @ j E S ( X j ) ,  



240 S. GELBART ET AL. Isr. J. Math. 

we have - -  for r in the stabilizer G~ of v~, 

o,,(,., h) = 0; '  (1, h)Oy,(r, h ) .  

Here O~, ~, and O,~ are the theta-kernels for the dual pairs (U(Evc),U(Y)) 
and (H~, U(Y)) respectively, and s~ and s2 denote the appropriate embeddings 

inherited from s = s(¢,7 , X1, X2). In particular, we can write 

P(~'c'x) = /G~(F)\G,(A) /U(Y)(F)\U(Y)(A) O'b'(l'h)O~'(r'h)f(h)dh x(det r)dr 

= [ 02(x)(h)O,,  (1, h)f(h)dh Jv (Y)(F)\U(Y)(A) 

with 02()C) the theta-lift 

/G,(F)\G,(A) O~(r, h)x(det r)dr 

of x on Go U(Zo) Hc to U(Y). 
To complete the proof, it remains to prove that O2(X) is itself (a multiple c~(@2) 

of) some character X* on U(Y)(A). For this, we may assume 02(x)(h) ~ 0 (since 

otherwise P(~, c, X) is automatically zero, and we don't need a formula for it!) 

By Part (a) of Proposition 1.2, we know at least that the functions in O2(X) 

generate a sum of irreducible representations a(x) of U(Y). (In the proof of 

Proposition 1.2, "cuspidality" of O2(X) was assumed only to ensure that the 

lifted automorphic representation decomposed directly; since Y is anisotropic 

here, the compactness of U(Y)(F)\U(Y)(A) makes this assumption redundant.) 

Moreover, almost every local component of cr(x ) is the Howe lift of X- Thus it will 

suffice to prove that at least one of these local lifts again generates a character. 

In fact, let v be any place where both U(Y)v and U(Zc)v are isonmrphic to 

GL2(F~) (this happens for infinitely many v). Then the Howe lift (for the type 
H pair (GL2, GL2)) can be constructed explicitly using Tate-Godement-Jacquet 

integrals as on p.65 of [MVW]. In this case, modulo possible twisting by unitary 

characters of the determinant, w• restricted to GL2 × GL2 acts in S(M(2, 2)) via 

the natural actions of GL2 on the right and left of 2 × 2 matrix space M(2, 2); 

cf. [MVW] p.62. Moreover, the integrals 

¢ #9(xg)x~(det x)d~ x , 
L2(F~) 
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or possibly their residue, provide elements of Hom(w¢®X~, X~-l). This establishes 

that the Howe lift of X to U(Y)  is again a character, and completes the proof of 

Proposition 3.1. | 

2.7 E x a m p l e s  o f  ~r w i t h  P(~r, c, X) = 0 for all c and  X 

Let us call a cuspidal representation a of U(Y) t h e t a - s t a b l e  if any theta-lift of 

a to any unitary group U(1) = U(Evc) is zero. In classical language, this means 

that a is not a theta-series constructed from a (Hermitian) form in one variable. 

Clearly, "most" cuspidal a on U(Y)  are theta-stable (we return to the meaning 

of theta-stability in §3.1 below). 

There exist (hypercuspidal) endoscopic cuspidal 7r on U(3) with PROPOSITION: 

the property 

P(~r, c, X) = 0 for all c a~2d X • 

Indeed, i f  a is a theta-stable cuspidal representation of a~] allisotropic U(Y)  in 

two variables, and the lifting data ( ¢, 7, Xl, X2) is chosen so that the lift of a 
XtX2  _ ~  to U(3) is non-zero, then (any irreducible component  7r of)  zr = Ogj,. r (o) is a 

cuspidal such rc on U(3). 

N.B: By Proposition 1.8 we know it is always possible to find (¢, 7, X], X2 ) as in 

the Proposition above. By Theorem 2.2, we also know that such 7r as constructed 

above must always lift to zero on U(1, 1). I 

Proof of the Proposition: Because a is theta-stable, Proposition 1.5.2 implies 

that its theta-lifts to U(3) are cuspidal; nmreover, since U(Y)  is compact, these 

lifts are also hypercuspidal (cf. the Concluding Remark of §1.7). Therefore, as 

observed at the beginning of this Section, the non-compact periods P(Tr, c,x) 

must automatically vanish. 

So suppose now that c is not a norm fi'om E, and X is any character of 

E l \ E l ( A ) .  Then by the formula of Proposition 2.6, 

P (~ ,  c, X) = a(~2) [ e , ,  (1, h)x*(h)f(lOd/*, (2.7.1) 
Ju (Y)(F)\U(Y)(A) 

with O , ,  (., h) a theta-kernel for the pair (U(Evc), U(Y))  (with respect to certain 

lifting data 8). But 

x*(det h)O~,, (., h) 
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is clearly another such theta-kernel (this time with respect to the embedding 

s*(., h) = x*(det h)s(., h)). Thus the right-hand side of (2.7.1) is just a theta-lift 

of f to U(Ev~), and the fact that a = {f} is (assumed) theta-stable implies that 

POr, c, X) must vanish, l 

2.8 Examples  of  hypercuspidal  7r with not all P0r, c, X) zero 

PROPOSITION: There exist hypercuspidal endoscopic ~r such that 

P(zr, e, X) # 0 for some c and X , 

namely: Take a cuspidal a on U(W) ~ U(1, 1), a character ¢ of A / F  such 
XIX2 ~. that W ( a , ¢ )  = {0}, and rifting data (¢,7, X,,X2) such that 0~,,~ ( ) # 10} on 

U(3); then each irreducible component of O g:,.~( a ) is an irreducible hypercuspidal 

endoscopic 7r o( the above type. 

Example: Let a on U(W)(A) be the theta-series lift of a character X on U(Evl) 

for some lifting data (¢',  7, Xl, X2). In this case, a will be non-zero (regardless 

of the data (¢, 7, Xl, X2), just as theta-lifts from U(Ev~) to U(3) nmst always be 

non-zero; cf. §3 of [Ge]). Moreover, it is easy to check that IV(a, ¢)  = {0) if ¢ is 

not in the orbit of ¢' ,  i.e., ¢(x) # ¢ ' (ax)  for any norm a from E x. Thus such a 

a (and ¢)  provide examples of the type required above. (These a, of course, are 

just the U(1, 1) analogues of the dihedral cusp forms on GL(2) constructed via 

theta-series by Hecke.) | 

Proof of the Proposition: Taking a and ¢ as in the statement of the Proposition, 
{'~XI~X2[ \ we use Proposition 1.8 to find lifting data (¢,%X],X2) so that ~¢,.y in) ¢ 

{0}. Note (by Proposition 1.7) that r --- O~,.v(a) can have no Whittaker model; 

moreover, it will be endoscopic as soon as it is cuspidal (Proposition 6.2.1 of 

[GeRol]). Therefore, it remains only to show that 7r is cuspidal (since a cuspidal 

r is hypercuspidal as soon as its Whittaker models vanish). 

We begin by showing directly that each ~ in O~,-r(a ) is hypercuspidal. To this 

end, we compute the constant term of ~ along U exactly as we computed the 

non-constant Fourier coefficients in the proof of Proposition 1.8. The end result, 

analogous to (1.5.4), is the formula (valid for the full lift O(a), hence also for P 

in any summand): 

(2.8.1) ~u(e) = V , ( O ) /  "/ 'xz(det h)O%(1,h)f(h)dh 
J U ( W ) ( F ) \ U ( W ) ( A )  
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where w- i  is the isotropic element of W whose stabilizer in U(W) is just the 

unipotent group 

(and the first integral is the contribution from the zero vector in {w : (w, w) = 

0}). To prove that lr is hypercuspidal we need to prove that ~u = 0. 

To see that the second term describing ~v vanishes, consider the Fourier expan- 

sions of O¢2(1 , uh) and f(uh) along the compact abelian group Un(F)\UH(A) ~-, 

F\A.  As mentioned in the Example above, it is easy to check that the ~bt-th 

Fourier eoefllcients of O~2(1 , uh) are zero unless ~b ~ is in the orbit of ~b -1 . On the 

other hand, the ~b-th Fourier coefficients of f in a are assumed to vanish; thus 

the inner integral in the second term above clearly vanishes. 

N.B.: This argument is completely different from the one used in §1.5 to an- 

alyze the contribution of the "second ternl" describing q0v. Here we conclude 

that this term is zero by assuming that kV(~r, ~b) = {0} (in addition to a being 

cuspidal); there we only assumed tr was cuspidal, but needed to integrate over 

U(A)N(F)\N(A) before getting zero. | 

To see that the first term in (2.8.1) also vanishes, note that this expression is 

just (q~2(0) times) the theta-series lifting of 71 (det h)f(h) to U(E) (with respect 

to the data (~b,g,x~,x2)). But by the Lemma stated and proved below, this 

theta-lifting must be zero, and hence ~v = O. 

To complete the proof (assuming the Lemnm below), we use Proposition 6.2.1 

of [GeRol] knowing now that O(a) is hypercuspidal - -  hence cuspidal) to con- 

clude that  each irreducible component of O,~-r(a ) generates all irreducible hy- 

percuspidal endoscopic representation zr of U(3). Moreover,since ~r itself is a 

theta-lift from a cuspidal on U(1, 1), it must have a non-zero lift back to U(1, 1) 

(cf. Part (b) of Proposition 1.2), and hence by Theorem 2.2, some P(Tr, c, X) is 

non-zero. | 

It remains to prove: 

LEMMA 2.8.2: Suppose 14~(a, ~b) = {0}, andfix any data (7, X~, X2)/'or the lifting 

between U(W) and U(E). Then the (~b,7,X~,X2) lifting of a to U(E) is zero. 
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Proof'. Suppose not. Then the lift to U(E) is non-zero, hence irreducible, and 

generates some character X. In particular, a~ is then the Howe lift of X~ for each v 

which does not split in E, and by a fanfiliar argument, this implies ),Y(a~, ¢'~) = 0 

unless ¢~ is in the orbit of ¢~, i.e., of the form ¢~(b,x) fox" some norm b~ from 

E~. So choose a global b in F ~ which is not a norm from E z, and such that 

W(a,¢b) ~ {0}. (This is always possible since W(a,¢ ' )  # {0} for some ¢', and 

by hypothesis W(a,¢~) = {0} if a i.~ a norm from E~.) If v is a finite place 

such that v does not split in E, and such that b is not a norm from E~, then 

}4~(a~,(¢b)~) ~ {0}, contradicting the fact that b~ must be a norm. | 

Remark: The construction outlined above nmst yield all hypercuspidal endo- 

scopic 7r with the property that P(Tr, c, X) ~ 0 for some c and X. To see this, one 

can argue "backwards" from the identity (2.8.1). II 

2.9 Exis tence of  algebraic cycles not spanned  by modula r  curves 

We shall prove that there exist cycle classes on a Picard modular surface Sff not 

spanned by the modular curves embedded in SK. We start by recalling some 

definitions and notation; for further background, see [Mo]. 

Let E/Q be a quadratic imaginary extension, and G the quasi-split unitary 

group U(3) relative to E/Q. Let Koo C G(R) be a maximal compact subgroup, 

and set 3C = G(R)/Koo. Then 3C is a Hernfitian symmetric donmin, isonmrphic 

to the complex two-ball. For each open compact subgroup K C G(AI), let 

SK = G(Q)\~ x G(AI)/K 

be the corresponding Shimura variety. For K sufficiently small (which we hence- 

forth assume), SK can be embedded in projective space as the set of complex 

points of a smooth quasi-projective variety S/~- of dimension 2. Its Baily-Borel 

compactification is denoted by S~, and its canonical smooth compactification by 

S~(. Moreover, there is a surjective map 

/~: H2(S~-,C) --~ IH2(C) = IH2(S~,C),  

where IH 2 denotes the intersection cohomology of S~ (cf. [BIRo]). 

Now denote by Z the image under ~ of the subspace of H~(S*K, C) generated 

by the classes of algebraic cycles of codimension one on S~-. Examples of such 

classes may be constructed as follows. For each ~ in Q+, let H~ denote the 
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corresponding unitary group in two variables introduced in §2.1. Recall that we 

can fix an embedding of H e into G which is unique up to G(Q)-conjugacy. The 

symmetric space attached to Hq is the upper half-1)lmm D, aald for each open 

compact subgroup K~ C H~(Af), 

CK, = H~(Q)\I} x H~(AI) /K ~ 

is isomorphic to the union of modular eurvea. Finally, if K~ C K l ,  we obtain an 

embedding of CK~ into SK. Then CK, defines a class in Z, and we let M denote 

the subspace of Z generated by these fundamental classes under the natural 

action of the Hecke algebra. 

The purpose of this paragraph is to prove the following: 

THEOREM 2.9: For K sufflciently small, M is a proper subspace o[ Z. In par- 

ticular, there exist cycle classes which are not in tile subspace spanned 'by the 

fundamental classes of the modular curves embedded in SK. 

The idea of the proof is to reduce the theorem to an assertion about theta-series 

liftings between U(2) and U(3). However, to even state this assertion, we need to 

recall some (irreducible) representations and results related to the decomposition 

of the cohomology IH2(C). 

First, let rl ° = {~r +, zr-, ~r0} denote the L-packet consisting of the three dis- 

crete series representations ~r such that H*(Lie(G(R)), Koo, zr) ~ 0. We recall 

that this Lie algebra cohomology has a Hodge decomposition, and we may choose 

the labelling so that the Hodge type of 7r ° is (1,1). The cohomology IH2(C) can 

then be decomposed it/to a direct sum 

IH2(C) = ( ~  g(~r l)  , 
*r! 

where each admissible representation 7r! of G(A/) is such that 7too ® lr! is cuspidal 
0 for some 7too E Hoo, and each direct summmld H(Trl) is au isotypic component 

under the action of the Hecke algebra. If Inf(Trl) denotes the set of 7too in Hoo 

such that 7too ® *r! occurs in the cuspidal spectrum, then as a module over the 

K/-Hecke algebra, 

H(~S) = V(~S) ~ ~ !  , 

where 7r;" is the space of K s invariants, and V(~rS) is a vector space of dimension 

d(~rS) = Card(Inf(~rS) ) . 
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PROPOSITION 2.9.1 (cf. [BIRo]): Suppose that Inf(Trf) = {~r°}. Then H(Tr]) is 

a subspace o[Z .  

In view of this result, Theorem 2.9 reduces to the following: 

PROPOSITION 2.9.2: There exists a cuspidal endoscopic L-packet II with IIoo = 

H°oo such that for some 7r ! in HI, the [ollowing hold: 

(a) = {:}, 

(b) ~r = 7r ° ® ~r/ is no~ a the~a-lift £rom U(I, I). 

Indeed, condition (b) implies (by our Theorem 2.2) that all the periods of r 

are zero. On the other hand, condition (a) implies that H(Trf) is a subspace of 

Z. It follows that Z is not spanned by the classes associated to the cycles CK,. 

(For an interpretation of period integrals in terms of the intersection pairing on 

IH2(C),  see [HLR].) 

To prove the Proposition, we fix once and for all a global splitting of the 

metaplectic group over G x U(1, 1) corresponding to the datum (¢ ,7 ,  X1,X2). 

The corresponding theta lift of a cuspidal representation a of U(I,  I) is simply 

denoted O(a, ¢)  (where ¢ is the non-trivial additive character of A / F  appearing 

in the datum (¢, 7, X1, X2)). 

Now let p -- p2 × p~ be any cuspidal L-packet on H = U(1, 1) x U(1) such that 

(i) H(poo) = H°oo and 

(ii) p l~  is trivial. 

(There exists a unique discrete series packet p ~  satisfying (i) az~d (ii); cf. §3 

of [Ro2].) For distinct odd primes p and q which remain prime in E, and 

v = p or q, let p0 be an L-packet on H(Q~) which consists of two supercuspidal 

representations. If we set II ° = II(p°), then H ° consists of four super cuspidal 

representations of G(Q~) (cf. 12.2 of [Rol]). Moreover, a standard application 

of the trace formula shows that we may choose a cuspidal L-packet p as above 

so that p is stable and Pv = p0 for v = p, q. 

Finally, setting H = H(p), and fixing data (¢ ,7 ,  X~,X2), we let ~ denote the 

unique cuspidal L-packet on U(1, 1) such that a non-zero irreducible component 

of the corresponding theta lift of a to U(3) belongs to II if and only if a E E (cf. 

Proposition 6.2.1 of [GeRol]). Note that Howe's conjecture is already proved for 

the representations av since v = p or q is assumed odd. Thus we can introduce 

"the" local Howe lifts O(av,¢~) for each av in Ev and ¢~ a local non-trivial 

additive character. If we let Xo denote the set of these representations, then Xv 
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is a subset of rio, and we claim that Proposition 2.9.2 follows from the assertion 

( . )  Card(X~) < 2 .  

0 to be an element of ri o which does not Indeed, (*) implies we may choose 7rp 

belong to X, and set 

° ® %  ®lr~ , ~ f  ~--~ ~'p 

where Ir~ is the tensor product of components lrw with w # p, q, c¢. But for any 

~r~, there exists a choice of ~rq in 1-Iq such that Inf(~rl) = 7r ° (cf. Proposition 

13.1.2(b) and Theorem 13.3.7 of [Rol]). So with this choice of 7rq, the repre- 

sentation lr I satisfies the conditions of Proposition 2.9.2, and it remains only to 

prove (*). 

Recall first that the elements of E~ are all of the form a~ for some a in F~, 

where the exponent a denotes conjugation by the nmtrix 

(Cf. Chapter 11 of [Roll.) Moreover, 

:) 
the isomorphism class of a~ depends 

only on a modulo NE/F(E*),  and the set X consists of the theta-lifts O(a~, ¢~) 

where a and b range through F z modulo NE/F(E~). (Cf. [GeRol], §3). Hence 

Card(X) < 4. To prove that at most two of these elements are distinct, it suffices 

to prove that O(a~, c b) is isomorphic to O(a~, ¢~b). 

We show more generally that w,~.(s(¢",7)(h,g)) is equivalent to 

w¢(s(¢, ' ,/)(h a, g)). For this, define a character of order two of the norm one 

elements E 1 by the formula 

It follows [GeRol] (p.458 and 3.1.2) that 

s (¢ . , v ) (h ,g )  = x . (det (h®g))s(¢ ,7)(h ,g) ,  and det(h®g) = det(h) 3 det(g) 2. 

This implies 

and hence 

s(¢ ~, 7)(h, g) = Xq(det h)s(¢, 7)(h, g ) ,  

(**) W¢o(S(¢",7)(h,g)) = x,(det  h)w,~o(S(¢,7)(h,g)) . 
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On the other hand, there exists an automorphism 5 of Mp(V ® W) which lifts 

the adjoint action ad($a) of 6a on Sp(V ® W) ([MVW], p.36). Hence 

9)) = x(h, 9) 

for some character x(h, g) of g x G. But wO(6(x)) is equivalent to w¢. (x), and 

therefore 
°,g)) 

is equivalent to 

w~. (s(¢, 7)(h, g)) = xa(det(h ® h))w~. (s(¢ ~, 7)(h, g)) .  

Since (**) implies that this latter expression equals 

X,, (det(h))w¢. (s(¢ a, 7)(h, g)), 

it remains to check that x(h,g) = xa(det(h ® g)) for (h,g) in the diagonal sub- 

group of U(V) x U(W) (since these elements give all possible deternfinants in 

El).  Observe that ad(6) fixes the image in Sp(Y ® W) of the product of U(V) 
and U(W). On the other hand, formula (3.1.3) of [GeRol] describes how the 

action of such elements (and more generally elements preserving the relevant po- 

larization) depend on Well's constant 7 and hence on ¢. From this it follows that 

X=Xa . 

3. C o n c l u d i n g  R e m a r k s  and  O p e n  P r o b l e m s  

3.1 S tab i l i t y  o f  cusp  forms  on  U(2) ( c o n c l u d e d )  

For each automorphic character 0 = O, × 02 of U(~'), there is an (endoscopic) 

L-packet p(O) on U(~')(A) corresponding to the functorial lift of 0 through the 

L-group morphism 

p: LU(I) x U(1) ----* LU((~') 

(cf. Chapter 4 of [Rol]). Following [Rol], we call a cuspidal automorphic repre- 

sentation a of U(~')(A) s table  if it is not a member of any such packet p(O). 
On the other hand, in §2 we encountered a notion of stability for a based on 

the theory of theta-series liftings, i.e. a is 8table (or "theta-stable") if for any 
lifting data (¢, 7, X~, X~), the theta-lift of a to U(E) is zero. 
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FACT 3.1.1: A representation ~r is theta-stable i f  and only i f  it is stable in the 

sense of [Rol]. 

This assertion is entirely analogous to Theorem 6.1.1 of [GeRol] which implies 

that a cuspidal ~r on U(3) is stable (in the sense of [Rol]) if and only if its theta- 

lifts to any U(~ *) are always zero. Moreover, the proofs are similar: the "if" 

direction is again the harder one, and it can be proved using a Shimura-type 

integral (this time for L(s, a x ~) in place of L(s, rr x ()). We omit further details, 

except to say that for U(1,1) the required Shimura-type integral is very similar 

to that used for the symmetric square L-function in [Ge Ja]. 

Now let us fix the dual pair (U(¢ ' ) ,  U(3)), where the skew form on E is (zt~. 

For fixed lifting data 

s = s(¢ ,7 ,  Xl,X2) , 

let us call a cuspidal representation a of U(f ' ) (A)  s - t h e t a  s t ab le  (or just s- 

s tab le )  if the s-theta lift of a ® 71 to U(E) is zero. Note that 

(1) we are not dealing with the lift of a to U(E),  but rather a twisted by 71 odet 

(where 3 ,1, as usual, denotes the restriction of 7 to norm one elements); 

(2) a is theta-stable if and only if it is s-stable for all possible s. 

3.2 Bas ic  o p e n  p r o b l e m s  

PROBLEM A: Given r in 1-I(p), a two variable unitary group He, emd fixed lifting 

data (¢ ,7 ,  Xl,X2), what conditions on ~r ensure that ~r has a non-zero theta-lift 

to Hc (for this/]xed lifting data ¢, 7, X1, X2)? 

As Section 2 shows, we cannot expect the answer to be in terms of L and ¢ 

conditions, since the non-vanishing of O0r ) clearly depends on where 7r lies in 

the L-packet. On the other hand, we do have one acceptable answer for H1, 

namely that O0r ) will be non-zero on H1 (for some lifting data) if mad only if 

P(rr, c, X) ~ 0 for some c and X- A nicer answer would be the following: 

CONJECTURE: '/r has a non-zero theta lift to He (with respect to the data 

¢,7,X~,X2) i f  and only i f  each component ~rv is a Howe lift from (Hc)v (with 

respect to the corresponding local lifting data). 

In the reverse direction, we have a similar problem: 
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PROBLEM B: Given a cuspidal a on Hc, and lifting data (¢,7, X],X2), when is 

the theta lilt of  a to U(3) non-zero? 

As already remarked, our result that such a lift is always non-zero for some 

suitably chosen lifting data has the obvious shortcoming that we can't easily 

specify which data works (and hence we are also unable to specify to which L- 

packet 1-I(P) this lift belongs. 

PROBLEM C: Given a cuspidal packet p = pl × p2 of U(1, 1) × U(1), can we 

describe the set 

{Tr E II(P):  7r cuspidal} 

explicitly as the set of O-lifts 

XtX2 

where ¢ varies through the class of additive characters of A / F, (7, X l , X2) is some 

lifting data specitJed completely by p (and the p det]ning ~ t  : LH ) LG), 

and a exhausts a given set of cuspidal representations of certain unitary groups 

in two variables? 

Note that Theorem 6.1 of [Gel (and especially the equality 6.1.3) gives a precise 

solution to this question in case p is one-dimensional, i.e. for the A-packet II(p) 

in place of the cuspidal L-packet I-I(p). Theorem 6.4 of [Gel falls short of this 

goal for the latter L-packet II(p) because we are imprecise there about the lifting 

data and unitary groups involved. 

PROBLEM D (Local Analogue of C): For a g'/ven L-packet p of U(1, 1) × U(1), 

can we describe the t]nite set 

as an explicit collection of  Howe lifts from U(1, 1) or the unique compact U ( ¢ ' )  ? 

We expect that - -  aside from a few exceptional (specifiable) p - -  each rr in 

rI(p) is a Howe lift from either U(1, 1) or the compact U(¢'), but not both; in 

this case, it should be possible to specify a and lifting data (7, Xl, X2) in terms 

of p, and then prove that lI(p) is the collection of Howe lifts ..rJo-e x 'x2 'w ¢,.f [a *'), as ~b 

varies through classes of ¢, and a* equals a or its Jacquet-Langlands lift to the 

compact form of U(1,1). 
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